
Improved Baselines with Visual Instruction Tuning

Haotian Liu1 Chunyuan Li2 Yuheng Li1 Yong Jae Lee1
1University of Wisconsin–Madison 2Microsoft Research, Redmond

https://llava-vl.github.io

Abstract

Large multimodal models (LMM) have recently shown
encouraging progress with visual instruction tuning. In this
paper, we present the first systematic study to investigate
the design choices of LMMs in a controlled setting under
the LLaVA framework. We show that the fully-connected
vision-language connector in LLaVA is surprisingly power-
ful and data-efficient. With simple modifications to LLaVA,
namely, using CLIP-ViT-L-336px with an MLP projection
and adding academic-task-oriented VQA data with response
formatting prompts, we establish stronger baselines that
achieve state-of-the-art across 11 benchmarks. Our final
13B checkpoint uses merely 1.2M publicly available data,
and finishes full training in ∼1 day on a single 8-A100 node.
Furthermore, we present some early exploration of open
problems in LMMs, including scaling to higher resolution
inputs, compositional capabilities, and model hallucination,
etc. We hope this makes state-of-the-art LMM research more
accessible. Code and model will be publicly available.

1. Introduction
Large multimodal models (LMMs) have become increas-
ingly popular in the research community, as they are
the key building blocks towards general-purpose assis-
tants [1, 28, 41]. Recent studies on LMMs are converg-
ing on a central concept known as visual instruction tun-
ing [34]. The results are promising, e.g. LLaVA [34] and
MiniGPT-4 [59] demonstrate impressive results on natural
instruction-following and visual reasoning capabilities. To
better understand the capability of LMMs, multiple bench-
marks [16, 26, 32, 35, 52] have been proposed. Recent
works further demonstrate improved performance by scal-
ing up the pretraining data [2, 13, 51], instruction-following
data [13, 17, 27, 55], visual encoders [2], or language mod-
els [37], respectively. The LLaVA architecture is also lever-
aged in different downstream tasks and domains, including
region-level [7, 53] and pixel-level [25, 48] understanding,
biomedical assistants [29], image generation [4], adversarial
studies [5, 56].
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Figure 1. LLaVA-1.5 achieves SoTA on a broad range of 11 tasks
(Top), with high training sample efficiency (Left) and simple mod-
ifications to LLaVA (Right): an MLP connector and including
academic-task-oriented data with response formatting prompts.

However, despite many benchmarks and developments, it
still remains unclear what the best recipe is to train LMMs
towards the goal of general-purpose assistants. For exam-
ple, LLaVA [34] excels in conversational-style visual rea-
soning and even outperforms later approaches like Instruct-
BLIP [13] on such benchmarks [52], while InstructBLIP
excels in traditional VQA benchmarks that demands single-
word or short answers. Given the significant differences
in the model architecture and training data between them,
the root cause of the disparity in their capabilities remains
elusive, despite conjectures [35, 52]: the amount of training
data, the usage of resamplers like Qformer [30], etc. To this
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end, we present the first systematic study to investigate the
design choices of LMMs in a controlled setting. Our study
originates from LLaVA and builds a road map by carefully
making effective contributions from the perspectives of the
input, model, and data.

First, we unveil that the fully-connected vision-language
connector in LLaVA is surprisingly powerful and data-
efficient, and we establish stronger and more feasible base-
lines built upon the LLaVA framework. We report that two
simple improvements, namely, an MLP cross-modal con-
nector and incorporating academic task related data such
as VQA, are orthogonal to the framework of LLaVA, and
when used with LLaVA, lead to better multimodal under-
standing capabilities. In contrast to InstructBLIP [13] or
Qwen-VL [2], which trains specially designed visual resam-
plers on hundreds of millions or even billions of image-text
paired data, LLaVA uses one of the simplest architecture
design for LMMs and requires only training a simple fully-
connected projection layer on merely 600K image-text pairs.
Our final model can finish training in ∼1 day on a single
8-A100 machine and achieves state-of-the-art results on a
wide range of benchmarks. Moreover, unlike Qwen-VL [2]
that includes in-house data in training, LLaVA utilizes only
publicly available data.

Next, we delve into an early exploration of other open
problems of large multimodal models. Our findings include:
(1) Scaling to high-resolution image inputs. We show that
LLaVA’s architecture is versatile in scaling to higher res-
olutions by simply dividing images into grids and main-
tains its data efficiency; with the increased resolution, it
improves the model’s detailed perception capabilities and
reduces hallucination. (2) Compositional capabilities. We
find that large multimodal models are capable of general-
izing to compositional capabilities. For example, training
on long-form language reasoning together with shorter vi-
sual reasoning can improve the model’s writing capability
for multimodal questions. (3) Data efficiency. We show
that randomly downsampling LLaVA’s training data mixture
by up to 75% does not significantly decrease the model’s
performance, suggesting that the possibility of a more so-
phisticated dataset compression strategy can further improve
LLaVA’s already efficient training pipeline. (4) Data scaling.
We provide empirical evidence for the scaling of data granu-
larity in conjunction with the model’s capability is crucial
for an improved capability without introducing artifacts like
hallucination.

In sum, we perform a systematic study on the training
of large multimodal models, and introduce a simple yet
effective approach to balance the multitask learning and ef-
fective scaling for large multimodal models. Our improved
baselines, LLaVA-1.5, uses only public data, achieves the
state-of-the-art on a broad range of 11 tasks, and is signif-
icantly more data-efficient than previous approaches. By

rethinking the conventional approaches and exploring the
open problems in visual instruction tuning, we pave the way
for more robust and capable systems for LMMs. We hope
these improved and easily-reproducible baselines will pro-
vide a reference for future research in open-source LMMs.

2. Related Work

Instruction-following large multimodal models (LMMs).
Common architectures include a pre-trained visual backbone
to encode visual features, a pre-trained large language model
(LLM) to comprehend the user instructions and produce
responses, and a vision-language cross-modal connector
to align the vision encoder outputs to the language mod-
els. As shown in Fig. 1, LLaVA [34] is perhaps the sim-
plest architecture for LMMs. Optionally, visual resamplers
(e.g. Qformer [30]) are used to reduce the number of vi-
sual patches [2, 13, 59]. Training an instruction-following
LMM usually follows a two-stage protocol. First, the vision-
language alignment pretraining stage leverages image-text
pairs to align the visual features with the language model’s
word embedding space. Earlier works utilize relatively few
image-text pairs (e.g. ∼600K [34] or ∼6M [59]), while some
recent works pretrain the vision-language connector for a
specific language model on a large amount of image-text
pairs (e.g. 129M [13] and 1.4B [2]), to maximize the LMM’s
performance. Second, the visual instruction tuning stage
tunes the model on visual instructions [34], to enable the
model to follow users’ diverse requests on instructions that
involve the visual contents.

Multimodal instruction-following data. In NLP, studies
show that the quality of instruction-following data largely
affects the capability of the resulting instruction-following
models [58]. For visual instruction tuning, LLaVA [34] is the
pioneer to leverage text-only GPT-4 to expand the existing
COCO [33] bounding box and caption dataset to a multi-
modal instruction-following dataset that contains three types
of instruction-following data: conversational-style QA, de-
tailed description, and complex reasoning. LLaVA’s pipeline
has been employed to expand to textual understanding [54],
million-scales [55], and region-level conversations [7]. In-
structBLIP [13] incorporates academic-task-oriented VQA
datasets to further enhance the model’s visual capabilities.
Conversely, [6] identifies that such naive data merging can
result in models that tend to overfit to VQA datasets and
thus are unable to participate in natural conversations. The
authors further propose to leverage the LLaVA pipeline to
convert VQA datasets to a conversational style. While this
proves effective for training, it introduces added complexities
in data scaling. However, in NLP, the FLAN family [12, 49]
shows that adding a large number of academic language
tasks for instruction tuning can effectively improve the gen-
eralization ability. In light of this, we consider investigating
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the root cause of the inability to balance between natural
conversations and academic tasks in multimodal models.

3. Approach
3.1. Preliminaries

As the seminal work of visual instruction tuning, LLaVA [34]
showcases commendable proficiency in visual reasoning ca-
pabilities, surpassing even more recent models on diverse
benchmarks [3, 52] for real-life visual instruction-following
tasks. LLaVA uses a single linear layer to project the vi-
sual features to language space, and optimizes the whole
LLM for visual instruction tuning. However, LLaVA falls
short on academic benchmarks that typically require short-
form answers (e.g. single-word), and tends to answer yes for
yes/no questions due to the lack of such data in the training
distribution.

On the other hand, InstructBLIP [13] is the pioneer to in-
corporate academic-task-oriented datasets like VQA-v2 [18]
along with LLaVA-Instruct [34], and demonstrates improved
performance on VQA benchmarks. It pretrains Qformer [30]
on 129M image-text pairs and only finetunes the instruction-
aware Qformer for visual instruction tuning. However, re-
cent studies [6, 52] show that it does not perform as well as
LLaVA on engaging in real-life visual conversation tasks.
More specifically, as shown in Table 1a, it can overfit to
VQA training sets with short-answers, even on requests that
require detailed responses.

3.2. Response Format Prompting

We find that the inability [6] to balance between short-
and long-form VQA for approaches like InstructBLIP [13],
which leverages instruction following data that includes both
natural responses and short-answers, is mainly due to the fol-
lowing reasons. First, ambiguous prompts on the response
format. For example, Q: {Question} A: {Answer}. Such
prompts do not clearly indicate the desired output format,
and can overfit an LLM behaviorally to short-form answers
even for natural visual conversations. Second, not finetuning
the LLM. The first issue is worsened by InstructBLIP only
finetuning the Qformer for instruction-tuning. It requires
the Qformer’s visual output tokens to control the length of
the LLM’s output to be either long-form or short-form, as in
prefix tuning [31], but Qformer may lack the capability of
properly doing so, due to its limited capacity compared with
LLMs like LLaMA.

Thus, to enable LLaVA to better handle short-form an-
swers while addressing the issues of InstructBLIP, we pro-
pose to use a single response formatting prompt that clearly
indicates the output format. It is appended at the end of VQA
questions when promoting short answers: Answer the ques-
tion using a single word or phrase. We find that when the
LLM is finetuned with such prompts, LLaVA is able to prop-

Visual input example, Multitask Balancing Problem:

User Is this unusual? Please explain in detail.
InstructBLIP yes

(a) Example of InstructBLIP [13] (Vicuna-13B) having difficulty balancing
between short- and long-form answers.

Visual input example, Different Format Prompts:

Normal prompt What is the color of the shirt that the man
is wearing?

Response The man is wearing a yellow shirt.

Ambiguous prompt Q: What is the color of the shirt that the
man is wearing? A:

Response The man is wearing a yellow shirt.

Formatting prompt What is the color of the shirt that the man
is wearing? Answer the question using
a single word or phrase.

Response Yellow.

(b) Comparison of how different prompts regularize the output format. The
results are obtained zero-shot directly after LLaVA undergoes the first-stage
vision-language alignment pretraining, without the second-stage visual
instruction tuning.

Table 1. Visual input example to illustrate the challenge of (a)
multitask balancing and (b) different format prompts. The same
image input is used.

erly adjust the output format according to the user’s instruc-
tions (see Table 1b), and does not require additional process-
ing of the VQA answers using ChatGPT [6], which further
enables scaling to various data sources. As shown in Table 2,
by merely including VQAv2 [18] in training, LLaVA’s per-
formance on MME significantly improves (1323.8 vs 809.6)
and outperforms InstructBLIP by 111 points.

3.3. Scaling the Data and Model

MLP vision-language connector. Inspired by the improved
performance in self-supervised learning by changing from a
linear projection to an MLP [8, 9], we find that improving the
vision-language connector’s representation power with a two-
layer MLP can improve LLaVA’s multimodal capabilities,
compared with the original linear projection design.

Academic task oriented data. We further include addi-
tional academic-task-oriented VQA datasets for VQA, OCR,
and region-level perception, to enhance the model’s capabili-
ties in various ways, as shown in Table 2. We first include
four additional datasets that are used in InstructBLIP: open-
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Figure 2. LLaVA-1.5-HD. Scaling LLaVA-1.5 to higher resolutions by splitting the image into grids and encoding them independently. This
allows the model to scale to any resolution, without performing positional embedding interpolation for ViTs. We additionally concatenate
the feature of a downsampled image to provide the LLM with a global context.

Method LLM Res. GQA MME MM-Vet

InstructBLIP 14B 224 49.5 1212.8 25.6

Only using a subset of InstructBLIP training data
0 LLaVA 7B 224 – 809.6 25.5
1 +VQA-v2 7B 224 47.0 1197.0 27.7
2 +Format prompt 7B 224 46.8 1323.8 26.3
3 +MLP VL connector 7B 224 47.3 1355.2 27.8
4 +OKVQA/OCR 7B 224 50.0 1377.6 29.6

Additional scaling
5 +Region-level VQA 7B 224 50.3 1426.5 30.8
6 +Scale up resolution 7B 336 51.4 1450 30.3
7 +GQA 7B 336 62.0∗ 1469.2 30.7
8 +ShareGPT 7B 336 62.0∗ 1510.7 31.1
9 +Scale up LLM 13B 336 63.3∗ 1531.3 36.1

Table 2. Scaling results on ■ data, ■ model, and ■ resolution.
We choose to conduct experiments on GQA [20], MME [16], and
MM-Vet [52] to examine the representative capabilities of VQA
with short answers, VQA with output formatting, and natural vi-
sual conversations, respectively. ∗Training images of GQA were
observed during training.

knowledge VQA (OKVQA [39], A-OKVQA [43]) and OCR
(OCRVQA [40], TextCaps [45]). A-OKVQA is converted to
multiple choice questions and a specific response formatting
prompt is used: Answer with the option’s letter from the
given choices directly. With only a subset of the datasets
InstructBLIP uses, LLaVA already surpasses it on all three
tasks in Table 2, suggesting LLaVA’s effective design. Fur-
thermore, we find further adding region-level VQA datasets
(Visual Genome [24], RefCOCO [23, 38]) improves the
model’s capability of localizing fine-grained visual details.

Additional scaling. We further scale up the input image
resolution to 3362 to allow the LLM to clearly “see” the
details of images, by swapping the vision encoder to CLIP-
ViT-L-336px (the highest resolution available for CLIP). In
addition, we add the GQA dataset as an additional visual
knowledge source. We also incorporate ShareGPT [44] data
and scale up the LLM to 13B as in [2, 7, 37]. Results on MM-
Vet shows the most significant improvement when scaling

the LLM to 13B, suggesting the importance of the base
LLM’s capability for visual conversations.

LLaVA-1.5. We denote this final model with all the modifi-
cations as LLaVA-1.5 (the last two rows in Table 2), which
achieves an impressive performance that significantly out-
performs the original LLaVA [34].

Computational cost. For LLaVA-1.5, we use the same
pretraining dataset, and keep the training iterations and batch
size roughly the same for instruction tuning as LLaVA [34].
Due to the increased image input resolution to 3362, the
training of LLaVA-1.5 is ∼2× as long as LLaVA: ∼6 hours
of pretraining and ∼20 hours of visual instruction tuning,
using 8× A100s.

3.4. Scaling to Higher Resolutions

In Sec. 3.3, we observe the advantage that scaling up the
input image resolution improves the model’s capabilities.
However, the image resolution of the existing open source
CLIP vision encoders is limited to 3362, preventing the
support of higher resolution images by simply replacing the
vision encoder as we did in Sec. 3.3. In this section, we
present an early exploration of scaling the LMM to higher
resolutions, while maintaining the data efficiency of LLaVA-
1.5.

When using ViT [14] as the vision encoder, to scale up
the resolution, previous approaches mostly choose to per-
form positional embedding interpolation [2, 30] and adapt
the ViT backbone to the new resolution during finetuning.
However, this usually requires the model to be finetuned on
a large-scale image-text paired dataset [2, 30], and limits the
resolution of the image to a fixed size that the LMM can
accept during inference.

Instead, as shown in Fig. 2, we overcome this by dividing
the image into smaller image patches of the resolution that
the vision encoder is originally trained for, and encode them
independently. After obtaining the feature maps of individ-
ual patches, we then combine them into a single large feature
map of the target resolution, and feed that into the LLM. To
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Method LLM Image Sample Size VQAv2 GQA VisWiz SciQA- TextVQA
Size Pretrain Finetune [18] [20] [19] IMG [36] [46]

BLIP-2 [30] Vicuna-13B 2242 129M - 65.0 41 19.6 61 42.5
InstructBLIP [13] Vicuna-7B 2242 129M 1.2M – 49.2 34.5 60.5 50.1
InstructBLIP [13] Vicuna-13B 2242 129M 1.2M – 49.5 33.4 63.1 50.7
Shikra [7] Vicuna-13B 2242 600K 5.5M 77.4∗ – – – –
IDEFICS-9B [21] LLaMA-7B 2242 353M 1M 50.9 38.4 35.5 – 25.9
IDEFICS-80B [21] LLaMA-65B 2242 353M 1M 60.0 45.2 36.0 – 30.9
Qwen-VL [2] Qwen-7B 4482 1.4B† 50M† 78.8∗ 59.3∗ 35.2 67.1 63.8∗

Qwen-VL-Chat [2] Qwen-7B 4482 1.4B∗ 50M† 78.2∗ 57.5∗ 38.9 68.2 61.5∗

LLaVA-1.5 Vicuna-7B 3362 558K 665K 78.5∗ 62.0∗ 50.0 66.8 58.2
LLaVA-1.5 Vicuna-13B 3362 558K 665K 80.0∗ 63.3∗ 53.6 71.6 61.3
LLaVA-1.5-HD Vicuna-13B 4482 558K 665K 81.8∗ 64.7∗ 57.5 71.0 62.5

Specialist SOTA: PaLI-X-55B [10] 86.1∗ 72.1∗ 70.9∗ – 71.4∗

Table 3. Comparison with SoTA methods on academic-task-oriented datasets. LLaVA-1.5 achieves the best performance on 4/5
benchmarks, and ranks the second on the other. ∗The training images/annotations of the datasets are observed during training. †Includes
in-house data that is not publicly accessible.

Method POPE [32] MME MMBench [35] SEED-Bench [26] LLaVA- MM-Vet
rand pop adv [16] en cn all img vid Wild [34] [52]

BLIP2-14B [30] 89.6 85.5 80.9 1293.8 – – 46.4 49.7 36.7 38.1 22.4
InstructBLIP-8B [13] – – – – 36 23.7 53.4 58.8 38.1 60.9 26.2
InstructBLIP-14B [13] 87.7 77 72 1212.8 – – – – – 58.2 25.6
Shikra-13B [7] – – – – 58.8 – – – – – –
IDEFICS-9B [21] – – – – 48.2 25.2 – 44.5 – – –
IDEFICS-80B [21] – – – – 54.5 38.1 – 53.2 – – –
Qwen-VL [2] – – – – 38.2 7.4 56.3 62.3 39.1 – –
Qwen-VL-Chat [2] – – – 1487.5 60.6 56.7 58.2 65.4 37.8 – –

LLaVA-7B [34] 76.3 72.2 70.1 809.6 38.7 36.4 33.5 37.0 23.8 62.8 25.5
LLaVA-1.5-7B 87.3 86.1 84.2 1510.7 64.3 58.3 58.6 66.1 37.3 65.4 31.1
LLaVA-1.5-13B 87.1 86.2 84.5 1531.3 67.7 63.6 61.6 68.2 42.7 72.5 36.1
LLaVA-1.5-13B-HD 87.5 86.4 85.0 1500.1 68.8 61.9 62.6 70.1 41.3 72.0 39.4

Table 4. Comparison with SoTA methods on benchmarks for instruction-following LMMs. LLaVA-1.5 achieves the best overall
performance.

provide the LLM with the global context and to reduce the
artifact of the split-encode-merge operation, we addition-
ally concatenate the feature of a downsampled image to the
merged feature map. This allows us to scale the input to
any arbitrary resolution and maintain the data efficiency of
LLaVA-1.5. We call this resulting model LLaVA-1.5-HD.

4. Empirical Evaluation
4.1. Benchmarks

We evaluate LLaVA-1.5 on a collection of both academic-
task-oriented benchmarks and recent benchmarks specifi-
cally proposed for instruction-following LMMs, totalling
12 benchmarks. For academic-task-oriented benchmarks,
VQA-v2 [18] and GQA [20] evaluate model’s visual percep-
tion capabilities on open-ended short answers. VizWiz [19]
contains 8,000 images to evaluate model’s zero-shot gen-
eralization on visual questions asked by visually impaired
people. Following InstructBLIP [13], the image subset of
ScienceQA [36] with multiple choice are used to evaluate

the zero-shot generalization on scientific question answering.
TextVQA [46] contains text-rich visual question answering.

For recent benchmarks proposed for instruction-following
LMMs, POPE [32] evaluates model’s degree of hallucination
on three sampled subsets of COCO [33]: random, common,
and adversarial and we report the F1 score on all three splits.
Other benchmarks evaluate the model’s capabilities on a
wide range of domains and applications, with different re-
sponse formats. MME-Perception [16] evaluates model’s
visual perception with yes/no questions. MMBench [35]
evaluates model’s answer robustness with all-round shuf-
fling on multiple choice answers. MMBench-CN [35] is the
Chinese-translated version of MMBench. SEED-Bench [26]
evaluates model’s performance on both images and videos
with multiple choice, and we sample the frame in the middle
to evaluate the accuracy on videos. LLaVA-Bench-in-the-
Wild [34] and MM-Vet [52] evaluate model’s capabilities
in engaging in visual conversations on a diverse range of
tasks, and evaluates the correctness and the helpfulness of
the response with GPT-4 evaluation.
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Visual input example, Tricky Question:

User If there are factual errors in the questions, point it out;
if not, proceed to answering the question.
What’s happening in the desert?

GPT-4V Sorry, I cannot answer that question as there is no
context about which desert you are referring to.

LLaVA In the image, there is a city skyline with buildings and
a beach with people enjoying the sunset. The scene is
set in a desert, which is unusual for a beach setting.

LLaVA-1.5 There are no deserts in the image. The image features
a beach with palm trees, a city skyline, and a large
body of water.

Table 5. LLaVA-1.5 can detect and answer tricky questions when
prompted to verify the question.

4.2. Results

We show that LLaVA-1.5 achieves the best overall per-
formance on 12 benchmarks, despite using magnitudes
smaller pretraining and instruction tuning data compared
with other methods [2, 13]. LLaVA-1.5 significantly outper-
forms LLaVA on all benchmarks for instruction-following
LMMs. Note that it is challenging to evalute the original
LLaVA on academic datasets like VQA-v2 [18] that demand
open-ended short answers.

When we continue to scale up the image resolution to
4482 with LLaVA-1.5-HD, it further improves the overall
performance on all benchmarks, especially on tasks that
require perception of details in the images (e.g. OCR in MM-
Vet, detailed description in LLaVA-Bench-in-the-Wild [34]).
Moreover, we find that adding the global context effectively
recovers the model from the split-and-merge artifacts and
guides the model to more easily locate the relevant regions
from the high-resolution features (see appendix).

It is encouraging that LLaVA-1.5 achieves the best perfor-
mance with the simplest architecture, academic compute and
public datasets, and yields a fully-reproducible and afford-
able baseline for future research. The results also suggest
that visual instruction tuning plays an important role in im-
proving an LMM’s capabilities, and raises questions upon
the common belief that LMMs require significant amount
of vision-language alignment pretraining [2, 13, 30], despite
that the vision encoders (e.g. CLIP [42], OpenCLIP [22],
EVA-CLIP [15], etc.) are already pretrained on web-scale
image-text paired data. LLaVA-1.5 (even the 7B model)
outperforms 80B IDEFICS [21], a Flamingo-like LMM with

Visual input example, Constrained JSON Output:

User Please read the text in this image and return the informa-
tion in the following JSON format (note xxx is placeholder,
if the information is not available in the image, put "N/A"
instead).
{"class": xxx, "DLN": xxx, "DOB": xxx, "Name": xxx, "Ad-
dress": xxx, "EXP": xxx, "ISS": xxx, "SEX": xxx, "HGT": xxx,
"WGT": xxx, "EYES": xxx, "HAIR": xxx, "DONOR": xxx}

GPT-4V {"class": "C", "DLN": "1234568", "DOB": "08/31/1977",
"Name": "Ima Cardholder", "Address": "2570 24th Street, Any-
town, CA 95818", "EXP": "08/31/2014", "ISS": "08/31/2011",
"SEX": "F", "HGT": "5-05", "WGT": "125 lbs", "EYES":
"BRN", "HAIR": "BRN", "DONOR": "VETERAN"}

LLaVA {"class": "Driver License", "DLN": "CA123 456 789", "DOB":
"01/01/1990", "Name": "Amy", "Address": "Anytown, CA",
"EXP": "08/31/2023", "ISS": "Veteran", "SEX": “F", "HGT":
"5’5", "WGT": "130", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "Unknown"}

LLaVA-
1.5

{"class": "C", "DLN": "1132456789", "DOB": "08/23/1971",
"Name": "Ima Cardholder", "Address": "Anytown, State, Zip",
"EXP": "08/23/2014", "ISS": "California", "SEX": "F", "HGT":
"5’5", "WGT": "123", "EYES": "Brown", "HAIR": "Brown",
"DONOR": "N/A"}

Table 6. LLaVA-1.5 can extract information from the image and
answer following the required format, despite a few errors com-
pared with GPT-4V. GPT-4V results are obtained from [50].

billions of trainable parameters for cross-modal connection.
This also makes us rethink the benefits of the vision samplers
and the necessity of the additional large-scale pretraining, in
terms of multimodal instruction-following capabilities.

4.3. Emerging Properties

Format instruction generalization. Although LLaVA-1.5
is only trained with a limited number of format instructions,
it generalizes to others. First, VizWiz [19] requires the model
to output “Unanswerable” when the provided content is in-
sufficient to answer the question, and our response format
prompt (see Appendix) effectively instructs the model to do
so (11.1% → 67.8% on unanswerable questions). We addi-
tionally present qualitative examples on instructing LLaVA-
1.5 to verify tricky questions (Fig. 5), respond in a con-
strained JSON format (Fig. 6), and more in appendix.

Multilingual multimodal capability. Though LLaVA-1.5
is not finetuned for multilingual multimodal instruction fol-
lowing at all (all visual instructions including VQA are in
English), we find that it is capable of following multilingual
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Figure 3. Ablation on LLM choices. Data points represent the
relative performance of the best performing variant for each dataset.

instructions. This is partly due to the multilingual language
instructions in ShareGPT [44]. Although ShareGPT does not
contain images in its instructions, the model learns from this
dataset the behavior of adaptively responding with the lan-
guage that corresponds to the user’s request. We empirically
show that this behavior is transferred to visual conversations.
We also quantitatively evaluate the model’s generalization
capability to Chinese on MMBench-CN [35], where the
questions of MMBench are converted to Chinese. Notably,
LLaVA-1.5 outperforms Qwen-VL-Chat by +7.3% (63.6%
vs 56.7%), despite Qwen being finetuned on Chinese multi-
modal instructions while LLaVA-1.5 is not.

4.4. Ablation on LLM Choices

In NLP, findings [47] suggest that the capability of the
base LLM can affect its instruction-tuned successors. In
this section, we explore two families of LLMs and study
their contribution to the final model’s multimodal capabil-
ity: LLaMA-based (Vicuna-v1.1, Vicuna-v1.3) and LLaMA-
2-based (Vicuna-v1.5, LLaMA-2-Chat). Vicuna-v1.3 and
Vicuna-v1.5 use the same ∼150K ShareGPT [44] data (2×
that used in v1.1). Unlike Vicuna series that is only trained
with supervised instruction finetuning (SFT), LLaMA-2-
Chat is further optimized with reinforcement-learning from
human-feedback (RLHF). We visualize the relative perfor-
mance of these variants in Fig. 3.

First, we find that Vicuna-v1.5 achieves the best overall
performance, and LLaMA-2-based models generally per-
form better than LLaMA-1-based, suggesting the importance
of the base language model. This is further evidenced by
the results on MMBench-CN [35]: despite Vicuna-v1.3 and
v1.5 using the same ShareGPT data for instruction tuning,

GQA
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MMEMMBench

MMBench-CN
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MM-Vet

0.8

0.9

1.0

10%
20%
30%

40%
50%
100%

Figure 4. Ablation on data efficiency. Data points represent the
relative performance of the best performing variant for each dataset.

the performance in generalization to Chinese of Vicuna-v1.3
is significantly worse than v1.5.

Second, language instruction-tuning matters on specific
capabilities that are required by each dataset. For example,
although LLaMA-2-Chat and Vicuna-v1.5 achieves almost
the same performance on MMBench, the generalization to
MMBench-CN [35] of LLaMA-2-Chat is worse than Vicuna-
v1.5, which is partly due to that the most SFT/RLHF data of
LLaMA-2-Chat is in English and does not contain as many
multilingual data as in ShareGPT. Furthermore, TextVQA
requires both the model’s capability of identifying the text
characters in the images, and also processing the noisy out-
puts from the OCR engine; such noise may be more com-
monly observed in the ShareGPT data, which is collected
in-the-wild from daily usage of ChatGPT.

5. Open Problems in LMMs

Given the successful scaling of LLaVA-1.5, we conduct
additional studies on open problems in LMMs using the
model design and data mixture of LLaVA-1.5.

5.1. Data Efficiency

Despite the data efficiency of LLaVA-1.5 when compared
with approaches like InstructBLIP [13], the training of
LLaVA-1.5 still doubles when compared with LLaVA. In
this section, we conduct experiments for further improving
the data efficiency by randomly sub-sampling the training
data mixture of LLaVA-1.5, with a sampling ratio ranging
from 0.1 to 0.5. We visualize the relative performance of
different sampling variants in Fig. 4.

First, the full data mixture provides the best knowledge
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coverage, and allows the model to achieve the best overall
performance. To our surprise, with only 50% of the samples,
the model still maintains more than 98% of the full dataset
performance. This suggests that there is room for further
improvements in data efficiency.

Second, when downsampling the dataset to 50%, the
model’s performance on MMBench, ScienceQA, and POPE
does not decrease at all, and it even slightly improves on
MMBench. Similarly, the model’s performance remains
steady when further downscaling the data from 50% to 30%.
These results show promise of having the less-is-more [58]
benefit for multimodal models as well.

5.2. Rethinking Hallucination in LMMs

Hallucination is an important issue to tackle for LLMs and
LMMs. Often in LMMs, we attribute the model’s hallucina-
tion to the errors or hallucinations in the training dataset. For
example, the detailed descriptions in LLaVA-Instruct [34]
may contain a small amount of hallucinated content, and it
is believed that training on such data may have caused the
model to hallucinate when asked to “describe the image in
detail”. However, we find that such hallucination is signifi-
cantly reduced, when we scale the model’s inputs to higher
resolutions like 4482.

This finding is interesting as it suggests that the LMMs
may be robust to a few such errors in the training data. How-
ever, when the input resolution is not sufficient for the model
to discern all details in the training data, and the amount of
data that is at that granularity beyond the model’s capabil-
ity becomes large enough, the model learns to hallucinate.
This further suggests that there needs to be a balance be-
tween improving the data annotation with more details and
the model’s capability to properly process the information
at such granularities. An imbalanced scaling can cause the
model to have an increased tendency to hallucinate or have a
reduced understanding in visual details. We hope this finding
provides a reference for future work in terms of dealing with
hallucination and the scaling of the models and data.

5.3. Compositional Capabilities

We demonstrate interesting compositional capabilities in
LLaVA-1.5: the model trained on a set of tasks indepen-
dently generalizes to tasks that require a combination of
these capabilities without explicit joint training. We note
some of the findings below.

First, we observe an improved language capability in vi-
sual conversations after including the ShareGPT [44] data, in-
cluding the multimodal multilingual capability as discussed
in Sec. 4.3. Moreover, the model is more capable at pro-
viding longer and more detailed responses in visual conver-
sations. Second, the additional visual knowledge from the
academic-task-oriented datasets, improves the visual ground-
ness of LLaVA-1.5’s responses in visual conversations, as

evidenced quantitatively by the improved results on MM-
Vet [52] and LLaVA-Wild [34] in Table 4.

However, there is still difficulty in achieving ideal per-
formance for some tasks that require a certain combination
of capabilities. For example, being able to correctly answer
the attribute of a certain object in VQA, does not guarantee
an accurate depiction of that object attribute in a detailed
description of the whole image. Furthermore, the capability
of engaing in conversations with certain foreign languages
(e.g. Korean) still falls behind. See appendix for examples.

These findings suggest that the compositional capabilities
of LMMs can be leveraged to improve the model’s perfor-
mance without significantly increasing the data by exhaus-
tively including all task combinations. Yet, it can be further
investigated, and a deeper understanding of the mechanism
behind the compositional capabilities of LMMs can further
improve the capability and the data efficiency of LLaVA-1.5.

6. Conclusion
In this paper, we take a step towards demystifying the design
of large multimodal models, and propose a simple, effective,
and data-efficient baseline, LLaVA-1.5, for large multimodal
models. In addition, we explore the open problems in visual
instruction tuning, scale LMMs to higher resolutions, and
present some intriguing findings in terms of model halluci-
nation and compositional capabilities for LMMs. We hope
these improved and easily-reproducible baselines as well as
the new findings will provide a reference for future research
in open-source LMM.

Limitations. Despite the promising results demonstrated
by LLaVA-1.5, several limitations must be acknowledged.
First, LLaVA-1.5 utilizes full image patches, potentially
prolonging each training iteration. While visual resam-
plers [2, 13, 30] reduce the number of visual patches in
LLMs, they currently cannot achieve convergence as effi-
ciently as LLaVA with a comparable amount of training data,
probably due to more trainable parameters in the resam-
plers. The development of a sample-efficient visual resam-
pler could pave the way for future scaling-up of instruction-
following multimodal models. Second, LLaVA-1.5 is not
yet capable of processing multiple images due to the lack of
such instruction-following data, and the limit of the context
length. Third, although LLaVA-1.5 exhibits proficiency in
following complex instructions, its problem-solving capa-
bilities can still be limited in certain domains, which could
be improved with a more capable language model and with
high-quality, targeted visual instruction tuning data. Finally,
despite its significantly reduced propensity for hallucination,
LLaVA-1.5 is not exempt from producing hallucinations and
occasionally disseminating misinformation, and should be
used with caution in critical applications (e.g. medical).
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Appendix
This appendix is organized as follows.

• In Section A, we show implementation details for
LLaVA-1.5-HD (Sec. A.1), data and prompts (Sec. A.2),
and hyperparameters (Sec. A.3).

• In Section B, we present more qualitative results for
response format prompts (Sec. B.1), compositional ca-
pabilities (Sec. B.2).

A. Implementation Details
A.1. LLaVA-1.5-HD

A.1.1 Preprocessing

Overview. We use CLIP-ViT-L-14 (2242) as the base image
encoder. We first select and pad the input image to a target
resolution that effectively captures its details, and split the
image into 2242 grids. All 2242 image patches are encoded
by the CLIP image encoder separately and their features are
merged back to a single large feature map. We then post-
process the resulting feature map to a flattened list of features.
We additionally concatenate the features of a fixed-resolution
image to provide the model with a global context.

Target resolution selection. We predefine a set of resolu-
tions to support up to six grids (1x1, 1x2, 1x3, 1x4, 1x5, 1x6,
2x2, 2x3, and their transpose). This system allows for a max-
imum resolution of 672x448 (or 448x672). Two criteria are
enforced in the target resolution selection: (1) Detail preser-
vation: the selected resolution preserves as much detail from
the original image as possible; (2) Resource efficiency: the
resolution should not be excessively large to avoid unneces-
sary consumption of pixels and memory (e.g. it should not
select 4482 for a 2242 input image).

Postprocessing. We perform three steps of postprocessing
to ensure that the final features can be processed effectively
and efficiently by the language model. (1) Padding removal.
Features corresponding exclusively to the paddings are dis-
carded. This reduces the number of visual tokens processed
by the language model and improves the efficiency. (2) Row-
end Tokens. We append a special token to the end of each
row of features, to provide an explicit indication of the shape
of the image. Unlike the original LLaVA and LLaVA-1.5
that uses a fixed resolution, we now use a variable resolution
for the image features of LLaVA-1.5-HD, such indication
allows the language model to capture the exact shape and the
size of the image for each sample. (3) Flattening. Finally, we
flatten the image feature map and feed it into the language
model along with language token features.

Global context. We additionally pad and resize the image
to a single image of 2242, and concatenate it with the high
resolution features to provide a global context. Ablation

on a 7B model shows that the addition of the global con-
text effectively boosts performance on all three validation
benchmarks.

GQA MME MM-Vet

high-res patch only 62.9 1425.8 31.9
+global context 63.8 (+0.9) 1497.5 (+71) 35.1 (+3.2)

A.1.2 Training

Since we compute the visual features on the original 2242

resolution that the vision encoder is trained on, we do not
perform additional pretraining. We also do not perform
additional high resolution pretraining for the visual projec-
tors, and perform visual instruction tuning directly on the
higher-resolution images.

A.2. Data

Our final training data mixture contains a variety of datasets:
VQA [18, 20, 39, 43], OCR [40, 45], region-level VQA [23,
24, 38], visual conversation [34] and language conversa-
tion [44] data. We adopt multiple strategies to reduce train-
ing cost and enhance efficiency, detailed as follows:
1. For all VQA datasets, QA pairs from the same training

image are merged into a single conversation.
2. For ShareGPT [44], we filter out invalid conversations as

[11]. Unlike Vicuna [11], long conversations that surpass
2048 tokens are truncated rather than splitting to multiple
conversations. This results in ∼40K conversations.

3. Each QA pair in A-OKVQA [43] is augmented k times,
where k is the number of choices per question, to coun-
terbalance the lack of multiple-choice data.

4. 80K conversations are sampled from OCRVQA [40].
5. For Visual Genome, we sample 10 annotations for images

with additional annotations.
6. For RefCOCO, conversations are dissected into segments,

each containing fewer than 10 conversations.
7. We obverse that language conversations are often longer

than visual ones. For each batch, we sample conversa-
tions only from a single modality, and this speeds up the
training by 25%, and does not affect the final outcome.
All data splits are concatenated together and sampled

with the same probability. We present the response format-
ting prompts of the final instruction-following data mixtures
in Table 7 and the response format prompts used for each
evaluation benchmark in Table 8.

A.3. Hyperparameters

The latest Vicuna v1.5 [57] is used as the base LLM. LLaVA-
1.5 uses the same set of hyperparameters as the original
LLaVA, except that we halve the learning rate in pretraining
due to the usage of the MLP projection layer instead of
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Data Size Response formatting prompts

LLaVA [34] 158K –
ShareGPT [44] 40K –

VQAv2 [18] 83K Answer the question using a single word or phrase.
GQA [20] 72K
OKVQA [39] 9K
OCRVQA [40] 80K

A-
OKVQA [43]

66K Answer with the option’s letter from the given
choices directly.

TextCaps [45] 22K Provide a one-sentence caption for the provided
image.

RefCOCO 48K Note: randomly choose between the two formats
[23, 38] Provide a short description for this region.

VG [24] 86K Provide the bounding box coordinate of the region
this sentence describes.

Total 665K

Table 7. Instruction-following Data Mixture of LLaVA-1.5.

Data Response formatting prompts

LLaVA-Bench, MM-Vet –

VQAv2, GQA, TextVQA,
MME, POPE

Answer the question using a single word or
phrase.

ScienceQA, MMBench,
SEED-Bench

Answer with the option’s letter from the given
choices directly.

VizWiz When the provided information is insufficient,
respond with ‘Unanswerable’. Answer the
question using a single word or phrase.

Table 8. Response format prompt for evaluation.

the original linear projection layer design. We show the
training hyperparameters for both first-stage vision-language
alignment pretraining and the second-stage visual instruction
tuning in Table 9. We use greedy decoding for evaluation to
ensure reproducibility.

Hyperparameter Pretrain Finetune

batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Table 9. Hyperparameters of LLaVA-1.5 are the same as the
original LLaVA, except that we halve the learning rate in pretraining
due to the usage of the MLP projection layer.

B. Qualitative Results

B.1. Response Format Prompts

We show additional examples of LLaVA-1.5 generalizing to
different unseen response format prompts.

Visual input example, Different Format Prompts:

User What is the color of the shirt that the man is
wearing? Answer the question using a single
word or phrase.

LLaVA-1.5 Yellow

User Is this unusual? Please explain briefly with a
short sentence.

LLaVA-1.5 Yes, it is unusual to see a man ironing clothes
while standing on the back of a moving car.

User Is this unusual? Please explain in detail.
LLaVA-1.5 Yes, this is an unusual scene. A man is ironing

clothes while standing on the back of a mov-
ing yellow SUV. This is not a typical activity
one would expect to see on a city street, as iron-
ing clothes is usually done indoors, in a more
private setting. The man’s actions are not only
unconventional but also potentially dangerous,
as standing on the back of a moving vehicle can
be hazardous and may lead to accidents or in-
juries. Additionally, the presence of a suitcase
and a handbag in the scene suggests that the man
might be traveling or on the go, which further
emphasizes the unusual nature of the situation.

User What is unusual about this image? Answer
briefly with a single sentence.

LLaVA-1.5 A man is ironing clothes in the back of a car.
User Give a more detailed explanation.
LLaVA-1.5 The image shows a man ironing clothes in the

back of a car, which is an unusual sight as ironing
is typically done indoors. The man is standing
on a folding table, and the car appears to be a
taxi. The scene takes place on a city street, with
other cars and a truck visible in the background.

Table 10. LLaVA-1.5 learns to format the response according to
the user’s request, generalizes to unseen format instructions, and
can alter the response format within the conversation upon the
user’s request.

First, as shown in Table 10, LLaVA-1.5 can provide de-
tails at different granularities in response to user’s requests.
When requested by the user, it is also capable of switching
between response formats within the conversations.

Second, we provide another example of the constrained
prompting to generate the prompts for Stable Diffusion mod-
els. We show an example of generating anime prompts in
Table 12.
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Visual input example, Visual Writing Task:

User Compose an engaging travel blog post about a recent trip to this place, highlighting cultural experiences and must-see
attractions.

LLaVA In my recent trip to Honolulu, I had the opportunity to experience the vibrant local culture and explore the beautiful beaches
that this city has to offer. One of the must-see attractions was Waikiki Beach, where I witnessed a lively atmosphere with
people sunbathing, swimming, and playing beach games. The crystal blue waters of the Pacific Ocean were a stunning sight,
and the white sandy beach provided the perfect spot for relaxation.
Aside from the beach, I also had the chance to immerse myself in the local culture by visiting the Pearl Harbor Memorial,
which paid tribute to the events that led to the United States’ involvement in World War II. The memorial was a somber
reminder of the past, and it was fascinating to learn about the history surrounding the attack on Pearl Harbor.
Other cultural experiences included trying local Hawaiian cuisine, such as poke bowls and traditional Hawaiian dishes,
which were delicious and offered a unique taste of the region. I also had the opportunity to explore the city’s bustling streets,
where I came across local shops, markets, and street performers, adding to the lively atmosphere.
Overall, my trip to Honolulu was an enriching experience, filled with cultural discoveries, breathtaking natural beauty, and
unforgettable memories.

LLaVA-1.5 Title: A Sunny Escape to the Tropical Paradise of Waikiki Beach

Introduction:
I recently had the pleasure of visiting the beautiful Waikiki Beach in Hawaii, and I must say, it was an unforgettable
experience. The crystal blue waters, the lively atmosphere, and the stunning cityscape in the background made it a perfect
destination for a relaxing getaway. In this travel blog post, I’ll share my experiences and must-see attractions during my trip
to Waikiki Beach.

Day 1: Arrival and Exploration
Upon arrival, I was greeted by the warm and welcoming Hawaiian culture. The vibrant colors and lively music set the tone
for my adventure. I decided to explore the area around Waikiki Beach, starting with the iconic Diamond Head Crater. The
hike to the top was a bit challenging, but the breathtaking views of the beach and the city made it worthwhile.

Day 2: Beach Day and Cultural Experiences
I woke up early and headed to the beach to enjoy a day of sunbathing and swimming. The beach was bustling with activity,
and I loved watching the surfers catching waves. In the evening, I attended a traditional Hawaiian luau, where I learned
about the local customs and traditions, including hula dancing and the art of making leis.

Day 3: City Tour and Sunset Cruise
On the third day, I took a guided city tour to learn more about the history and culture of Hawaii. I visited the Pearl Harbor
Memorial, the Bishop Museum, and the Iolani Palace, which was once the residence of the Hawaiian monarchs. In the
evening, I went on a sunset cruise around the Waikiki coastline, where I enjoyed a delicious meal and witnessed the stunning
sunset over the ocean.

Day 4: Snorkeling and Relaxation
For my last day in Waikiki, I decided to go snorkeling in the crystal clear waters of Hanauma Bay. The marine life was
incredible, and I had the opportunity to see colorful fish and coral reefs up close. After a long day of exploring, I relaxed on
the beach and soaked up the sun.

Conclusion:
My trip to Waikiki Beach was an unforgettable experience filled with adventure, culture, and relaxation. From the
breathtaking views of the ocean to the vibrant cityscape, this tropical paradise has something for everyone. I highly
recommend visiting Waikiki Beach for a sunny escape and a chance to immerse yourself in the beautiful Hawaiian culture.

Table 11. LLaVA-1.5 provides more detailed, visually-grounded responses for writing tasks with visual inputs than LLaVA.
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Spanish: ¿Cuáles son las cosas de las que debería tener cuidado cuando visite aquí?
Cuando visite el lugar con la pier en el lago, debería tener cuidado de las siguientes cosas:
1. Mantenerse alejado del borde de la pier para evitar caer al agua o sufrir una lesión.
2. No subir a la pier si está prohibido o si no está diseñada para ello.
3. No arrojar objetos o desperdiciar en el agua, ya que esto puede dañar el ecosistema del lago.
4. No interferir con la fauna local, como los pájaros que se pueden encontrar en la zona.
Si decide nadar en el lago, asegúrese de conocer las condiciones del agua, como la profundidad y la presencia de algas, y de tener las habilidades y 
equipos adecuados para hacerlo de manera segura.
Tenir en cuenta estas precauciones ayudará a garantizar una experiencia segura y responsable en el lugar.

Translation: When visiting the place with the pier at the lake, you should be careful about the following things:
1. Stay away from the edge of the pier to avoid falling into the water or getting injured.
2. Do not climb onto the pier if it is prohibited or not designed for it.
3. Do not throw objects or litter into the water, as this can harm the lake's ecosystem.
4. Do not interfere with the local wildlife, such as birds that may be found in the area.
If you decide to swim in the lake, make sure to be aware of water conditions such as depth and the presence of algae, and have the appropriate 
skills and equipment to do so safely. Taking these precautions will help ensure a safe and responsible experience at the location.

Japanese: ここを訪れる際に注意すべきことは何ですか？
この場所は、寂しい湖に⾯した⽊製の桟橋です。訪れる際に注意すべきことは、桟橋の安全性と周囲の環境に対する配慮です。桟橋の
構造が安定していることを確認し、桟橋が浸⽔していないことを確認することが重要です。また、湖の⽔深や周囲の地形に注意して、
安全に桟橋を渡ることができるようにすることも⼤切です。さらに、湖の⽔質や周囲の⽣態系に配慮して、環境に負荷をかけないよう
にすることも重要です。
Translation: This place is a wooden pier facing a serene lake. When visiting, it's important to pay attention to the safety of the pier and respect the 
surrounding environment. Confirming the stability of the pier's structure and ensuring that it is not submerged in water are crucial. Additionally, 
being mindful of the lake's depth and the surrounding terrain is important to safely cross the pier. Furthermore, it's essential to consider the water 
quality of the lake and the local ecosystem to minimize any impact on the environment.

Korean: 여기를방문할때주의해야할사항은무엇인가요?
이장소는물체위의부두로, 맑고푸른물체에있습니다. 방문자들은이부두에서물체를감상하고, 물체주변의자연경치를즐길수
있습니다. 그러나이부두는물체위에있기때문에, 물체의수준이높아질수있으므로, 방문자들은물체의수준을확인하고적절한예방
조치를취해야합니다. 또한, 부두에서물체로뛰어들지않도록주의해야합니다. 이부두는매우아름다운자연경치를제공하므로, 
방문자들은이장소를즐기면서안전한방법으로물체를감상할수있도록주의해야합니다.

Translation: This place is located on a pier above clear and blue water. Visitors can admire the object from this pier and enjoy the natural scenery 
around the object. However, since the pier is above the object, the object's level can be high, so visitors should check the object's level and take 
appropriate precautions. Also, be careful not to jump from the pier into the object. This pier offers incredibly beautiful natural scenery, so visitors 
should enjoy this place while being mindful of safe ways to appreciate the object.

Query: What are the things I should be cautious about when I visit here?
Reference (English): When visiting the pier over the lake, there are a few things you should be cautious about. First, 
ensure that you have appropriate footwear with good traction, as the pier may be wet or slippery, especially if it has 
been raining or if there is algae on the surface. Second, be mindful of the weather conditions, as the image shows a 
cloudy sky, which could indicate potential rain or storms. It is essential to stay safe and avoid being caught in a sudden 
storm or lightning. Lastly, be aware of your surroundings and any potential hazards, such as the presence of boats or 
other watercraft in the area. Always follow any posted signs or guidelines to ensure a safe and enjoyable experience.

Figure 5. Compositional capability: multilingual visual conversation. LLaVA-1.5 generalizes to multilingual visual conversations, when
training on visual instruction following data (English-only) together with the text-only ShareGPT data (multilingual). However, there can
still be errors in some languages (e.g. Korean, errors marked in red).
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B.2. Compositional Capabilities

We present qualitative examples of the compositional capa-
bilities of LLaVA-1.5. As shown in Fig. 5, LLaVA-1.5 is
capable of participating in multilingual visual conversations
and adapting its output language based on the user’s input,
even though it has not been trained on multilingual visual
instruction data. We hypothesize this emerging bahavior is a
compositional capability learned from visual conversations
(English-only) and the text-only ShareGPT data (multilin-
gual). However, there can still be errors in some languages
(e.g. Korean), which could be improved by incorporating
more of those language data.

Additionally, in Table 11, we show another observed
compositional capability after including the ShareGPT data
in training. LLaVA-1.5 is able to produce more detailed
and visually-grounded responses in writing tasks with visual
inputs than LLaVA.

Visual input example, Constrained SD Prompt Generation:

User Here’s a formula for a Stable Diffusion im-
age prompt: a cartoon-style image of [adjec-
tive] [subject] [haircut] [clothing] [doing action],
[color scheme], detailed, trending on artstation.
Generate the prompt for this image.

LLaVA-1.5 A cartoon-style image of a young girl with a
bob haircut, wearing a white kimono, holding
a stuffed animal, and posing for a picture, with
a color scheme of pink and white, detailed, and
trending on artstation.

Table 12. Constrained prompt generation for Stable Diffusion.
Corresponding components are marked in color.
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